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ABSTRACT

Several examples of Lipschitz isomorphisms are given with non-surjective
derivatives. In particular there is a Lipschitz isomorphism on £2 that
maps a cube affinely into a hyperplane.

Introduction

In this note we give several examples of Lipschitz isomorphisms of an infinite
dimensional separable real Hilbert space onto itself whose Gateaux derivative is
not always an isomorphism; we start by analysing a simple example (from [Iv]) of
a mapping for which this happens at one point, and obtain at the end an example
where this behaviour happens at every point of an arbitrarily given cube in our
space. Moreover, the mapping from this example maps the cube affinely into a
hyperplane, which shows that even the image of a hyperplane under a Lipschitz
isomorphisms need not be Gaussian (or Aronszajn) null. (Since we will not use
the notions of null sets here, we refer to [Ar] and [Ph] for the notions and their
applications to differentiability, to [Cs] for the equivalence of these notions, to [Bo)
for a simple example showing that this notion is not preserved under Lipschitz
isomorphisms, and to [Ma] for an example of a Lipschitz isomorphism that maps
a set that is not Haar null into a set that is Aronszajn null; this information may
also be found in the forthcoming book [BL)].)
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Suppose that X and Y are Banach spaces. We recall that amap f: X - Y
is said to be Géateaux differentiable at z if there is a continuous linear map
f(z): X > Y such that

Foph — 1 L+ 1) = @)
t—>0 t
forall h € X. Amap f: X — Y is a linear isomorphism provided that both f
and its inverse have bounded Lipschitz constants.

We start by describing a simple construction of the following example; it will
serve as a starting point of our analysis of the construction of not too well differ-
entiable Lipschitz isomorphisms.

Example 1: There is a Lipschitz isomorphism f of #; onto itself such that, at
some T € {3, the Gateaux derivative f’(z) exists and is not surjective. ]

Let us first briefly describe a simple construction of such an example. For
every n = 1,2,... we denote by £ — R,(6,z) the rotation of £y through the
angle # about its subspace spanned by the vectors eg, where k # 1,n. Define
0n: €2 — R by Op(z) = —7mmin(1/2,max(0,1 — 2™||z||)) and fn: €2 — €2 by
fn(z) = Ra(0:(||z]l),z). Then f =limy,_yo0 fro- -0 fy is a Lipschitz isomorphism
of £, onto itself whose Gateaux derivative at the origin exists and is given by the
shift f/(0)(3_ hxex) = Y hxeky1; in particular, it is not surjective.

A direct proof of these statements is straightforward and (in a slightly modified
form) it can be found in {Iv] and [BL]. We give the main arguments in the last
section, where they will serve as an introduction to the use of the related but
somewhat more technical arguments needed to construct other examples.

Our second example is constructed in the same way as the first; we only order
the rotations differently.

Example 2: There is a Lipschitz isomorphism f of ¢, onto itself such that, at
some z € fo, the weak limit of (f(z + tu) — f(z))/t is zero, as t — 0, for every
direction u € £5. ]

In the third example we construct a Lipschitz isomorphism of £ onto itself
whose restriction to a particular non-degenerate cube is the shift by one coordi-
nate.

Example 3: There is a Lipschitz isomorphism f of £3 onto itself such that f(z) =
(0,21, z2,...) whenever z € £, satisfies |z;] < 277 for each j. 1

Our last isomorphisms of £» have a bad differentiability and mapping behaviour
on an arbitrarily given cube; they are, however, obtained by a simple modification
of Example 3, which should therefore be considered as the main result of this note.
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Example 4: Let ar be a sequence of positive numbers with limg_, o ax = 0.
Then there is a Lipschitz isomorphism f of £; onto itself such that
1. f maps the cube C = {z € £3: |z;| < a;} into a hyperplane,
2. the restriction of f to C is affine, and
3. for every x € C, the Gateaux derivative f'(z) exists and is not surjective.
1

We start our constructions by a section pointing out in which way we may
construct Lipschitz isomorphisms by a limit procedure. The basic idea is that,
although we have to compose arbitrarily large numbers of mappings, we can
keep control of the Lipschitz constant if each map has its own part of the space
on which it distorts distances, and if on the remaining parts of the space it
is composed from isometries. This particular behaviour is clear in the case of
the mappings f, from the above description of the construction of Example 1,
since f, is an isometry on U, = {z: ||z]] < 27!}, where it is a rotation,
as well as on {z: ||z|| > 27"}, where it is the identity. The behaviour of the
derivative at the origin comes from the rotational behaviour of f, on U,; this
argument works in all our examples. The estimate of the Lipschitz constant of the
composition f,o---of; and of its inverse are enabled by the fact that the barriers
{z: 27771 < ||z]| < 27} are disjoint. Here, however, the arguments of the more
advanced examples become somewhat less straightforward, and we therefore start
with a section devoted to developing the technique in some generality; we begin
by collecting the basic methods, and continue by improving them to a technical
form suitable for our purpose. The constructions of the examples are deferred to
the last section.

Constructions of Lipschitz isomorphisms

LEmMma 1:

(a) If X,Y, Z are metric spaces, gn: X =Y, hn: Y = Z, g, converge pointwise
to g, h, converge pointwise to h, and Lip(h,) < L < oo, then hy, o g,
converge pointwise to h o g.

(b) If gn: X — Y are Lipschitz isomorphisms such that g, converge pointwise
to g, g5 converge pointwise to h, and Lip(gn), Lip(g;!) < L < oo, then g
is a Lipschitz isomorphism of X onto Y.

Proof: The statement (a) follows from

dist(hn(gn(z)), h(g(2))) < L dist(gn(z), g(z)) + dist(hn(g(z)), h(g(z))) = 0,
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and the statement (b) follows by deducing from (a) that & o g is the identity on
X, goh is the identity on Y, and noting that a pointwise limit of a sequence of
functions with uniform bound on their Lipschitz constants is Lipschitz. |

We remark that the above argument generalises the well known fact that, if f is
a Lipschitz isomorphism between Banach spaces X and Y such that, for some a €
X, the Gateaux derivatives of f at a and of f ! at b = f(a) exists, then f'(a) is a
linear isomorphism of X onto Y. Indeed, consider ¢, (z) = n(f(a+ z/n) — f(a))
and h,(y) = n(f~1(b+y/n) — f~1(b)). By definition of the Gateaux derivative,
gn(z) = f'(a)(z) and h,(y) — f~V(b)(y); since g, 0 hy, and hy, 0gy, are identities,
we infer that f’(a)o f~(b) and f~1'(b) o f'(a) are identities, so f'(a) is a linear
isomorphism of X onto Y.

We will use the following Lemma only for finite covers, and, by a simple mod-
ification of our construction, we could use it only for finite open covers, in which
case its proof would become even simpler.

LEMMA 2: IfC is a convex set in a normed linear space X, Y is a metric space,
f: C = Y s continuous and C can be covered by countably many sets on each
of which the Lipschitz constant of f does not exceed L, then Lip(f) < L.

Proof: 1t suffices to consider the case when C = [a,b] C R and to show that
dist(f(b), f(a)) < L(b—a). Suppose that dist(f(a), f(b)) > L(b—a). Let [a,b] =
U?; M;, where M; are sets on which the Lipschitz constant of f does not exceed
L. Let S = {sup(M;): i = 1,2,...}. The function g(t) = dist(f(a), f(t))—L(t—a)
is continuous on [a,b] and g(a) = 0 < g(b). Using that g(S) is countable, we
choose c € [g(a), g(b)] > g(S) and use the intermediate value theorem to find the
last t € [a,b] such that g(t) = c. Whenever ¢ < s < b, then g(s) > g(t), which
gives dist(f(s), f(t)) > dist(f(a), f(s))—dist(f(a), f(£)) > g(s)—g(t)+ L(s—t) >
L{s—t). Finding M; containing ¢, we infer that ¢ is the maximum of M;,sot € §,
which contradicts g(t) = ¢ ¢ g(5). |

LEMMA 3: Suppose that hy,...,h, are Lipschitz mappings of a Banach space X
onto itself and that for each k there is a set Ay C X such that

1. the restriction of hy to Ay has Lipschitz constant at most one,

2. he(X N\ Ax) C X \ A4y whenever k < n, and

3. the restriction of hry to hi{X \ Ag) has Lipschitz constant at most one

whenever k < n.
Then
Lip(h, 0 - - - 0 hby) < max(Lip(hy,), ..., Lip(h1)).
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Proof: Let gy be the identity and gx = hgo--- o hy for £ > 1. Note that,
whenever g;_1(z) € X \ A; for some j, then the second assumption implies that
gk—1(x) € X ™ Ay for all k > j. Hence the sets

j—1 n
M; = ﬂ 91:—11(Ak) n ﬂ 9/?-11(X N Ag),
k=1 k=j

where j = 1,...,n 4+ 1 (with ﬂgzlg,:_ll(Ak) = X and ﬂ:=n+lg;_11(X N Ag) =
X) cover X.

The restriction of g, to each such M; is a composition of the restriction of h; to
Ay, ..., hj_y to A;_;, which all have Lipschitz constant at most one according
to the first assumption, followed by h; whose Lipschitz constant we estimate
by Lip(h;), and followed by the restriction of A;11 to h;{X N A4;), ..., hn to
hn—1(X ~ A,_1), which all have Lipschitz constant at most one according to the
last assumption. Hence the restriction of g, to each M; has Lipschitz constant
at most max(Lip(hy), ..., Lip(hy)). Since g, is continuous (it is even Lipschitz),
by Lemma 2 it has Lipschitz constant at most max(Lip(h,), ..., Lip(h1)). |

LEMMA 4: Suppose that gy are Lipschitz isomorphisms of a Banach space X
onto itself such that Lip(gx), Lip(g; ") < L for some L < oo and that for each k
there is a non-empty set Uy C X such that

1. the restriction of g to Uy is an isometry,

2. the map g maps Uy onto itself,

3. Uk O Uiy,

4. gk+1(z) = = for every z € X ~ Uy, and

5. limg_y00 SUp, ¢ x dist(z, X N Uy) = 0.
Then the (uniform) limit

f=limgyo---0og
n—=ro0
exists and defines a Lipschitz isomorphism of X onto itself.

Proof: For each n, we use Lemma 3 with hy = gx and Ay = U to infer that
the Lipschitz constant of f, = g, o --- o g; does not exceed L; the assumptions
of the Lemma are satisfied since the restriction of gx to Uy is an isometry by
(1), ge{X NUk) = X NUx C X NUgy1 by (2) and (3), and the restriction of
k41 to ge(X NUg) = X NUy is an isometry by (4). Then we use Lemma 3
again with hy :_g;ikﬂ, Ap = XNU,_i for k < n and A, = 0 to infer that

the Lipschitz constant of f;! = gy 1o...0g:! also does not exceed L; the
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assumptions of the Lemma are satisfied since by (4) the restriction of g7}, 41 to
X N U,_y is the identity, so an isometry and the set U,,_; is mapped by g;f k41
onto itself, which together with (3) can be used to show that g, ', (XN A4g) =
Up—k C Upn—g—1 = X ™ Ag41 and, together with (1), that the restriction of g;_lk
to g (X N Ax) = g;_lk_H(Un_k) = Up— 18 an isometry.

Given & > 0 (using (5)) we find n such that for any z € X thereis z € X \U,
such that ||z — z|| < e. From (3) and (4) we infer that

ImOgm-10---0gnt1(2) =2

for m > n. Applying f,;!, we get that

1) = fal(2),
S0
1l @) = £ @ < Ifrt (@) = f @ + 121 (2) = £ @)
=1t (@) = FR @1+ 11 (2) = f @)
< 2Lz —q
< 2Le,

and we see that the sequence f,7! is uniformly convergent. Similarly, choosing
z € X N U, such that ||z — f,(z)|| < ¢, and letting y = f;1(z), we infer from (3)
and (4) that fn.(y) = fn(y) for m > n, and we estimate

I fm(z) — fa(@) < [ fm(@) = fm @) + [ fm(y) — frl2)ll
= [lfm (@) = Fn @) + 1 a(y) — fu ()]
< 2L|ly - «fl = 2L||f7 (=) — £ ()
< 2L2||2 = fa(z)
< 2L%,

which gives that the sequence f, is uniformly convergent. Consequently, our
statement follows from Lemma 1. |

LEMMA 5: Suppose that ¢ > 0, V is a two dimensional subspace of a Hilbert
space H with orthonormal basis vi, vy and orthogonal complement W, and that
U is a non-empty subset of H which is mapped onto itself by rotations of H about
W (i.e., whenever v,v' € V have the same norm and w € W, then v +w € U if
and only if V' +w € U).

Then there is a Lipschitz isomorphism g: H — H such that

1. g(u) = u whenever dist(u,U) > csup{|jz|: 2 €V, we W, z+w e U},
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2. g(zvy + yve + w) = yvy — zvy + w whenever ¢,y € R and w € W are such
that zv; + yva +w € U,

3. g(u) is obtained from u by a rotation about W,

4. the map g maps the set U onto itself, and

5. Lip(g),Lip(g~1) < &, where & is a constant depending on c only.

Proof: Let r = sup{|lz||: z € V, w € W, z+ w € U}; we may clearly assume
that 0 < r < oo and define §: H — R by

6(u) = max(0,1 — dist(u,U)/cr).

For notational purposes, it will be convenient to identify, for the rest of this
proof, the point zv; + yve € V with the complex number 2z = z + iy € C; thus H
becomes identified with C & W. (So, C is still considered as a two dimensional
real Hilbert space.) For 0 = £1 let h,: C@ W — C @ W be defined by

ho{u) = exp(—inob(u)/2)z+w fu=z+w, z2€C weW

We show that ¢ = h; has the required properties. To see (1), it suffices to note
that 8(u) =0 for u € N = {w: dist(u,U) > cr}, so hy(u) = u for all u € N. For
(2), we observe that 6(u) =1 foru e U,soif u = 2+ w,z € C,w € W, then
hi(u) = —iz+w. Clearly h,(u) is obtained from u by a rotation about W, which
shows (3). Since U is rotationally invariant, (4) follows.

Note that the function u — dist(u,U) is invariant under rotations about W.
Since hy (u) is obtained from u by a rotation about W, it follows that dist(u,U) =
dist(hs(u), U), which, according to the definition of 6, implies 6(u) = 0(hy(u)).
Consequently,

h_g(hs(u)) = exp(incb(hy(u)}/2)exp(—inod(u)/2)z + w =2+ w

whenever u = z + w,z € C,w € W. So h, are bijections, and h;! = h_,.

It remains to prove the required estimate of the Lipschitz constant of h,. To
obtain it, we first note that the mapping ¢: [-1,1] x {z € C;|2| <1+ 1/c¢} = C
defined by (s, z) = exp(—ims/2)z is continuously differentiable, so its Lipschitz
constant is bounded by a constant k > 1 which depends on ¢ only. We first show
that the Lipschitz constant of the restriction of h, to the cylinder

B={z+w:z€V, |z||<(1+¢)r and w e W}

is at most k. Since the W component of h, has Lipschitz constant one, it suffices
to consider its C component, say 7, which can be written as

n=crpod
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where ¢: B — [—1,1] x {z € C: |2| < 1 + 1/c} is defined by
d(u) = (00(u),zfcr) fu=z+w, 2€C, weW.

Since  has Lipschitz constant 1/cr, we have that Lip(¢) < 1/cr, and infer that
Lip(n) < x as required. Finally, we note that 8(u) = 0 for u ¢ B, so h, is the
identity on the complement of B; since h, is continuous, Lemma 2 implies that
Lip(hs) < k. 1

1. Construction of the examples

In this section we denote by e, the standard orthonormal basis of £5.

CONSTRUCTION OF EXAMPLE 1: The construction from the introduction may
now be described by letting U, = {z € £: ||z|| < 27"} and by using Lemma 5
withe=1,v; = v§") =e; and vg = u§“3 = €41 to find Lipschitz isomorphisms
fn: €2 — £5 with uniformly bounded Lipschitz constants such that

1. fo(x) = = whenever ||z|| > 27",

2. fn(x) = (Tne1, %2, -+, Tn, —T1,Tnt2, Tnts, - . .) for every « € U,

3. fa(u) is obtained from u by a rotation about {z € f: 1 = 2,41 = 0}, and

4. the map f, maps the set U, onto itself.

Then the assumptions of Lemma 4 are clearly satisfied, so the limit

f=~lim foo-ofy

n—oco

defines a Lipschitz isomorphism of Z; onto itself.
To show that f/(0) is not surjective, we note that the mappings f, preserve
the norm, so all sets f,(Ux) = Uy, for all k,n, and

fn O Of](fl:) = ($n+l,'—$l3_x2a ey Ty T2y T35 -+ )

for z € U,,. Whenever u € 5 is such that uy = 0 for k¥ > m, we infer that for |¢|
small enough,

fmo---o fi(tu) = (0, —tuy, —tug, . .., —tum,0,0,...);

since by (3) this point is fixed by all fi with & > m, we conclude that f(tu) =
(0, tuy, tug,...) for |t| sufficiently small. Since f is Lipschitz, this shows that
1 (0)(u) = (0,uy,uz,...) for all u € £5.
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It would not be difficult in this example to have that f is everywhere Gateaux
differentiable simply by replacing § with a smooth function given by

1 if flu]] <277,
0(u) = { sin* (2" 'wlull) if 277 < Jlufl < 277,
0 if [lul| > 271

CONSTRUCTION OF EXAMPLE 2: We use the same construction as for Exam-
ple 1, the only difference being that to construct f, we use the orthonormal
vectors v§”) = egy1 and vén) = egy14om, Wheren =2"+k, m>0,0<k < 2™

The proof that the imit f = lim,,_, o, fr0---0f; defines a Lipschitz isomorphism
of Z; onto itself is the same as above.

We show that the weak derivative of f at the origin is zero; since f is Lip-
schitz, this would follow once we show (a stronger property) that if all non-
zero coordinates of u occur before some 2P, then the first 27 — 1 coordinates
of f(tu) are zero provided that |¢] is small enough: since by (2) (with eg4; in
place of e; and ejyj4om In place of e,q1) the mappings f, for n < 2P can
change only the first 2P — 1 coordinates, all coordinates beyond the first 27 — 1
of fap_y0---0 fi(tu) are still zero. If |¢| is small enough, a direct calculation
then shows that fye+1_1 0--- 0 fi(tu) has zero as the first 27 — 1 coordinates as
well as all coordinates from 2P*! on. Using (3) we then see by induction that, if
m > p+1, then fom o---0 fi(tu) can have non-zero coordinates only for indices
2P < j < 2™, which shows that the first 27 — 1 coordinates of f(tu) are zero.
|

CONSTRUCTION OF EXAMPLE 3: We define U; = #; and for k > 2
U = {z€ly: 2 + xiﬂ < 272+ gpd lz;]| < 27t Lok for2<j < k}.

Using Lemma 5 with ¢ = 1/4, v; = vgk) = ¢; and vy = vék) = ey we find

Lipschitz isomorphisms gx: #2 — £, with uniformly bounded Lipschitz constants
such that

1. gi(z) = & whenever dist(z,Uy) > 27F,

2. gre(2) = (Zx41,T2,- -, Tky —T1, Tki2, Tkt3, - - -) fOT every z € Uy, and

3. the set Uy is mapped by gi onto itself.
We show that, if z € o \ Uy, then dist(z,Ur;,) > 27%71. If 2 € £, ~ Uy, then
o3+ iy > 27 or |z;| > 279+ 4 2=k for some 2 < j < k. Let y € Upyy;
then yf + y2,, < 272+ and |y;| <279t + 2% foreach 2 < j < k+ 1. We
estimate that

(1) y% + y12c+1 < 2—2k+2 + 2—2k+1 + 2—2k—2 — 52'2—2k—2
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so that if 22 + z2,, > 2724 then
o =yl > 27542 — (52.272k-2)1/2 = g 2=k=1 5 kL,
If lz;} > 279+ + 27F then
Iz —yll > |z;] — |y;] > 27F —27F"1 = 27F1

so that in both cases ||z — y|| > 27%~1, and we infer that dist(x, Ugy1) > 27571,
This inequality shows that Uy, D Ug41 and g1 (z) = z for z € Uy.
Since all the other assumptions of Lemma 4 are obvious, we may use it to infer
that the limit
f=-lim gio-og
k—o0

defines a Lipschitz isomorphism of £; onto itself.
Let C, = {z € {y: |z;] < 277 for all j} and, for k > 2, let

Ci = {z € by: || <27, |z;] <279 for 2 < j < k,and |z;| < 277 for j > k}.

Then Cj C Uy, so the expression for gy on Uy, gives that gx(Ck) = Cry1. We
infer that for every z € Cj,

~gk 0 0g1(2) = (—Tk41, %1, L2y - -, Thy —Tht2) —Tkt3s- )y

which in the limit as kK — oo shows that f(z) = (0,z1,%2,...)- ]

CONSTRUCTION OF EXAMPLE 4: Let n; < ng < --- be such that a,, <1
and Qn,,,; < /2. Denote by V the span of {e,;: j = 1,2,...}, by W its
orthogonal complement, and use Example 3 to find a Lipschitz isomorphism g of
V onto itself such that g(3°°2; Zn,en;) = 521 Tn;en,,, for every z € V such
that |z,,| <277 for j=1,2,....

Define f(v + w) = g(v) + w whenever v € V and w € W. Then the image of
the set

D ={z € ly: |z, < 277 for j=1,2,...}

lies in the hyperplane {z € f3: z,, = 0}. To show the statement concerning
the non-surjectivity of the derivative, we show that f'(z)(w + Z;’il Un,€n;) =
w + Zj‘f__l Tn,en;,, for every z € D and every u = w + Z;’;l Un,€n;. Since
f is Lipschitz, it suffices to verify this only when v has finitely many non-zero
coordinates, in which case it is clear since for |¢| sufficiently small we have z+tu €
D, so (f(z +tu) — f(2))/t = w+3 72, Tn;€n;,,- The statements of the example
follow since C' C D. ]
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