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ABSTRACT 

Several examples  of  Lipschitz  i somorph i sms  are given wi th  non-sur ject ive  

derivatives.  In par t icu lar  there  is a Lipschitz i somorph ism on ~2 t h a t  

m a p s  a cube  affinely into a hyperplane.  

Introduct ion  

In this note we give several examples of Lipschitz isomorphisms of an infinite 

dimensional separable real Hilbert space onto itself whose Gateaux derivative is 

not always an isomorphism; we start by analysing a simple example (from [Iv]) of 

a mapping for which this happens at one point, and obtain at the end an example 

where this behaviour happens at every point of an arbitrarily given cube in our 

space. Moreover, the mapping from this example maps the cube affinely into a 

hyperplane, which shows that  even the image of a hyperplane under a Lipschitz 

isomorphisms need not be Gaussian (or Aronszajn) null. (Since we will not use 

the notions of null sets here, we refer to [Ar] and [Phi for the notions and their 

applications to differentiability, to [Cs] for the equivalence of these notions, to [Bo] 

for a simple example showing that  this notion is not preserved under Lipschitz 

isomorphisms, and to [Ma] for an example of a Lipschitz isomorphism that  maps 

a set that  is not Haar null into a set that  is Aronszajn null; this information may 

also be found in the forthcoming book [BL].) 
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Suppose that  X and Y are Banach spaces. We recall that a map f :  X -+ Y 

is said to be Gs differentiable at x if there is a continuous linear map 

f ' (x ) :  X --+ Y such that 

f ' ( x )h  = lim f ( x  + th) - f (x )  
t-~O t 

for all h E X. A map f :  X ~ Y is a linear isomorphism provided that both f 

and its inverse have bounded Lipschitz constants. 

We start  by describing a simple construction of the following example; it will 

serve as a starting point of our analysis of the construction of not too well differ- 

entiable Lipschitz isomorphisms. 

Exa~ple  1: There is a Lipschitz isomorphism f of e2 onto itself such that,  at 

some x E e2, the G/Lteaux derivative f~(x) exists and is not surjective. | 

Let us first briefly describe a simple construction of such an example. For 

every n = 1 ,2 , . . .  we denote by x ~ R~(O,x) the rotation of/?2 through the 

angle 0 about its subspace spanned by the vectors ek, where k ~ 1,n. Define 

0n: /?2 -~ ]~ by On(x) = -Trmin(1/2,  m a x ( 0 , 1 -  2'~[[x[[)) and f,~: /?2 --+ /?2 by 

fr~(x) = R,~(O,~(llx[I), x). Then f = lim,~-~oo f,~o---of1 is a Lipschitz isomorphism 

of/72 onto itself whose GgLteaux derivative at the origin exists and is given by the 

shift f ' ( 0 ) ( ~  hkek) = Y]~ hkek+x; in particular, it is not surjective. 

A direct proof of these statements is straightforward and (in a slightly modified 

form) it can be found in [Iv] and [BL]. We give the main arguments in the last 

section, where they will serve as an introduction to the use of the related but  

somewhat more technical arguments needed to construct other examples. 

Our second example is constructed in the same way as the first; we only order 

the rotations differently. 

Example 2: There is a Lipschitz isomorphism f of/?2 onto itself such that,  at 

some x E/?2, the weak limit of ( f ( x  + tu) - f ( x ) ) / t  is zero, as t --+ 0, for every 

direction u E/?2. | 

In the third example we construct a Lipschitz isomorphism of/?2 onto itself 

whose restriction to a particular non-degenerate cube is the shift by one coordi- 

nate. 

Example 3: There is a Lipschitz isomorphism f of/?2 onto itself such that f (x )  = 

(0, Xl,X2,...) whenever x E ~2 satisfies Ixjl < 2 - j  for each j .  II 

Our last isomorphisms of/?2 have a bad differentiability and mapping behaviour 

on an arbitrarily given cube; they are, however, obtained by a simple modification 

of Example 3, which should therefore be considered as the main result of this note. 
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Example 4: Let ak be a sequence of positive numbers with l imk_~ ak = 0. 

Then there is a Lipschitz isomorphism f of g2 onto itself such that  

1. f maps the cube C -- {x E g2: Ixj[ <_ aj}  into a hyperplane, 

2. the restriction of f to C is affine, and 

3. for every x C C, the G~teaux derivative f l(x) exists and is not surjective. 
| 

We start  our constructions by a section pointing out in which way we may 

construct Lipschitz isomorphisms by a limit procedure. The basic idea is that,  

although we have to compose arbitrarily large numbers of mappings, we can 

keep control of the Lipschitz constant if each map has its own part of the space 

on which it distorts distances, and if on the remaining parts of the space it 

is composed from isometries. This particular behaviour is clear in the case of 

the mappings f,~ from the above description of the construction of Example 1, 

since f,~ is an isometry on Un : {x: I[xl[ <: 2-'~-1}, where it is a rotation, 

as well as on {x: I]xll > 2-'~}, where it is the identity. The behaviour of the 

derivative at the origin comes from the rotational behaviour of f,~ on Un; this 

argument works in all our examples. The estimate of the Lipschitz constant of the 

composition fn o . . .  o f  1 and of its inverse are enabled by the fact that  the barriers 

{x: 2 -~-1  < ]lxl] < 2 -'~} are disjoint. Here, however, the arguments of the more 

advanced examples become somewhat less straightforward, and we therefore start 

with a section devoted to developing the technique in some generality; we begin 

by collecting the basic methods, and continue by improving them to a technical 

form suitable for our purpose. The constructions of the examples are deferred to 

the last section. 

Constructions of Lipschitz isomorphisms 

LEMMA 1: 

(a) I f  X,  Y, Z are metric spaces, g~: X -+ Y ,  h,~: Y --+ Z, g,~ converge pointwise 
to g, h,~ converge pointwise to h, and Lip(h~) < L < oo, then h~ o g,~ 
converge pointwise to h o g. 

(b) I f  gn: X --+ Y are Lipschitz isomorphisms such that g~ converge pointwise 

to g, g~l converge pointwise to h, and Lip(gn), Lip(g~ 1) < L < oo, then g 
is a Lipschitz isomorphism of X onto Y .  

Proof'. The statement (a) follows from 

dist(hn (g,~(x) ), h(g( x) ) ) < L dist(gn(x),g(x)) + dist( h~(g(x) ), h(g(x) ) ) -~ 0, 
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and the statement (b) follows by deducing from (a) that h o g is the identity on 

X, g o h is the identity on Y, and noting that a pointwise limit of a sequence of 

functions with uniform bound on their Lipschitz constants is Lipschitz. | 

We remark that the above argument generalises the well known fact that,  if f is 

a Lipschitz isomorphism between Banach spaces X and Y such that, for some a C 

X, the Gs derivatives of f at a and of f - 1  at b = f (a)  exists, then f ' (a)  is a 

linear isomorphism of Z onto Y. Indeed, consider gn(x) = n ( f ( a  + x /n )  - f (a ) )  

and ha(y) = n ( f - l ( b  + y /n)  - f - l ( b )  ). By definition of the Gs derivative, 

g~(x) -+ f ' (a ) (x )  and h~(y) --~ f - l ' (b ) (y ) ;  since gnoh~ and h~og,~ are identities, 

we infer that  f ' (a)  o f - l ' ( b )  and f - l ' ( b )  o f ' (a)  are identities, so f ' (a)  is a linear 

isomorphism of X onto Y. 

We will use the following Lemma only for finite covers, and, by a simple mod- 

ification of our construction, we could use it only for finite open covers, in which 

case its proof would become even simpler. 

LEMMA 2: I f  C is a convex set in a normed linear space X ,  Y is a metric space, 

f:  C -~ Y is continuous and C can be covered by countably many sets on each 

of which the Lipschitz constant of f does not exceed L, then Lip(f)  < L. 

Proof: It suffices to consider the case when C = [a, b] C • and to show that  

gis t ( f  (b), f (a) )  < L ( b -  a). Suppose that dist(f(a),  f(b)) > L ( b -  a). Let [a, b] = 

~J~l  M~, where Mi are sets on which the Lipschitz constant of f does not exceed 

L. Let S = {sup(Mi): i = 1, 2 , . . .} .  The function g(t) = dist(f(a) ,  f ( t ) ) - L ( t - a )  

is continuous on [a, b] and g(a) = 0 < g(b). Using that g(S) is countable, we 

choose c C [g(a), g(b)] \ g(S) and use the intermediate value theorem to find the 

last t E [a, b] such that g(t) = c. Whenever t < s _< b, then g(s) :> g(t), which 

gives dis t(f(s) ,  f ( t )  ) > dist(f(a) ,  f ( s )  ) - d i s t ( f ( a ) ,  f ( t )  ) > g ( s ) - g ( t ) +  L ( s - t )  > 
L ( s - t ) .  Finding Mi containing t, we infer that t is the maximum of M~, so t E S, 

which contradicts g(t) = c ~ g(S). | 

LEMMA 3: Suppose that h i , . . . ,  hn are Lipschitz mappings o fa  Banach space X 

onto itself and that for each k there is a set Ak C X such that 

1. the restriction of hk to Ak has Lipschitz constant at most one, 

2. hk (X  \ Ak) C X \ Ak+l whenever k < n, and 

3. the restriction of hk+l to hk (X  \ Ak) has Lipschitz constant at most  one 

whenever k ~ n. 

Then 

Lip(ha o . . .  o hi) _< max(Lip(ha) , . . . ,  Lip(hi)). 
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Proo~ Let g0 be the identity and gk =- hk o . . .  o hi for k > 1. Note that,  

whenever g j - l ( x )  E X \ A j  for some j ,  then the second assumption implies that  

gk - l ( x )  C X \ Ak for all k > j .  Hence the sets 

M j =  N g k l _ l ( A k )  N -1 g k _ l ( X  \ Ak) ,  
k=l  k=j 

where j 1,. ,n  + 1 (with 0 -1 n = g k _ l ( X  \ Ak)  = = "" Nk=l gk_l(Ak)  X and Nk=n+l -1 

X) cover X. 

The restriction of gn to each such Mj is a composition of the restriction of hi to 

A1, . . . ,  hi-1 to Aj-1 ,  which all have Lipschitz constant at most one according 

to the first assumption, followed by hj whose Lipschitz constant we estimate 

by Lip(hi),  and followed by the restriction of hj+l to h j ( X  ". Aj) ,  . . . ,  h,~ to 

hn_ 1 (X \ A~_ 1), which all have Lipschitz constant at most one according to the 

last assumption. Hence the restriction of g~ to each Mj has Lipschitz constant 

at most max(Lip(hn) , . . . ,  Lip(hi)).  Since gn is continuous (it is even Lipschitz), 

by Lemma 2 it has Lipschitz constant at most max(Lip(h~) , . . . ,  Lip(hi)).  | 

LEMMA 4: Suppose that gk are Lipschitz isomorphisms of a Banach space X 

onto itself  such that Lip(gk), Lip(gk 1) <_ L for some L < c~ and that for each k 

there is a non-empty set Uk C X such that 

1. the restriction of gk to Uk is an isometry, 

2. the map gk maps Uk onto itself, 

3. Uk ~ Uk+~, 
4. gk+l(x) = x for every x E X \ Uk, and 

5. l i m k - ~  sup~ex dist(x, X \ Uk) = 0. 

Then the (uniform) limit 

f =  lim g n o ' " o g l  

exists and defines a Lipschitz isomorphism of  X onto itself. 

Proof: For each n, we use Lemma 3 with hk ---- gk and Ak = Uk to infer that  

the Lipschitz constant of f,~ --- g,~ o .-- o gl does not exceed L; the assumptions 

of the Lemma are satisfied since the restriction of gk to Uk is an isometry by 

(1), gk (X  ". Uk) = X \ Uk C X ", Uk+l by (2) and (3), and the restriction of 

gk+l to gk(X  \ Uk) = X \ Uk is an isometry by (4). Then we use Lemma 3 
--1 again with hk = g ~ - k + l ,  Ak = X \ Un-k for k < n and An = 0 to infer that  

the Lipschitz constant of f~-I = g~-I o . . .  o g~l also does not exceed L; the 
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assumpt ions  of the  L e m m a  are satisfied since by (4) the restr ict ion of gnlk+l  to 

X \ Un-k  is the identity, so an i sometry  and the set Un-k is m a p p e d  by -1 gn-k+l 
onto itself, which together  with (3) can be used to show tha t  g~-lk+ I ( X  \ Ak) ---- 

Un-k C Un-k-1 ~- X \ Ak+l and, together  with (1), t ha t  the restr ict ion of gn-k-1 
- 1  to gn-k+l (X  \ Ak) -1 = gn-k+l(U,~-k) = Un-k is an isometry.  

Given e > 0 (using (5)) we find n such tha t  for any x �9 X there  is z �9 X \ Un 

such tha t  [[z - xl[ < e. From (3) and (4) we infer tha t  

gm Ogre--1 0 . . .  O gn+l(Z ) -~ Z 

for m > n. Apply ing  fm 1, we get tha t  

fn l (Z)  . : fml (Z) ,  

SO 
l ] f m l ( X )  --  f n l ( x ) l [  _~ [ [ fml (X)  --  f m l ( Z ) l  I -~ H f m l ( Z )  - f~-l(x)H 

= [[f,~l(x) - f ,~l(z) t  [ + [[f~-X(z) - f~-l(x)[[ 

<_ 2 i t l z  - 

< 2LE, 

and we see t ha t  the s e q u e n c e  f n  1 is uniformly convergent.  Similarly, choosing 

z �9 X \ U,~ such t ha t  [[z - fn(x)[[ < 6, and lett ing y -- f ~ l ( z ) ,  we infer f rom (3) 

and (4) t ha t  fn(y)  -- f ,~(y) for m > n, and we es t imate  

Ilfm(x) - f~(x)ll  < [I fro(x) - fm(y)[I + Ilfm(y) - f~(x)[[ 

= H fro(X) -- f-~(Y)[I + IIA(y) - A(x) l l  

< 2 L i l y  - x t l  = 2Lllf l(z) - f l(A(x))ll 
< 2L211z - A ( x ) l l  

< 2L2e, 

which gives tha t  the  sequence fn is uniformly convergent.  Consequently,  our  

s t a t emen t  follows f rom L e m m a  1. | 

LEMMA 5: Suppose that c > O, V is a two dimensional subspace of  a Hilbert 

space H with orthonormal basis Vl, v2 and orthogonal complement W ,  and that 

U is a non-empty  subset of H which is mapped onto itself by rotations of  H about 

W (i.e., whenever v, v' E V have the same norm and w E W ,  then v + w E U i f  

and only i f  v' + w E U). 

Then there is a Lipschitz isomorphism g: H -~ H such that 

1. g(u) = u whenever dist(u, U) >_ csup{[[zH: z c V, w E W, z + w E U}, 
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2. g(XVl + yv2 ~- w) -~ yVl -- xv2 + w whenever  x,  y E ]~ and w E W are such 

that  x v l  + yv2 + w E U, 

3. g(u)  is obtained from u by a rotat ion about  W ,  

4. the  m a p  g maps  the  set U onto itself, and 

5. Lip(g),Lip(g -1) _< a, where a is a constant depending on e only. 

Proof." Let r -- sup{ilzl[: z E V, w E W, z + w E U}; we may clearly assume 

that  0 < r < co and define 0: H -+ R by 

0(u) = max(0, 1 - dist(u, U ) /c r ) .  

For notational purposes, it will be convenient to identify, for the rest of this 

proof, the point x v l  + yv2 E V with the complex number z = x + iy  E C; thus H 

becomes identified with C ~ W. (So, C is still considered as a two dimensional 

real Hilbert space.) For a -- •  let ha: C @ W ~ C @ W be defined by 

h a ( u ) = e x p ( - i ~ r a O ( u ) / 2 ) z + w  i f u = z + w ,  z E C ,  w E W .  

We show that  g = hi has the required properties. To see (1), it suffices to note 

that  0(u) = 0 for u E N = {u: dist(u, U) _> cr}, so ha(u)  = u for all u E g .  For 

(2), we observe that  0(u) = 1 for u E U, so if u = z + w,z  E C,w E W, then 

h i (u )  = - i z + w .  Clearly ha(u)  is obtained from u by a rotation about  W, which 

shows (3). Since U is rotationally invariant, (4) follows. 

Note that  the function u -+ dist(u, U) is invariant under rotations about  W. 

Since h~(u)  is obtained from u by a rotation about W, it follows that  dist(u, U) = 

dist(h~(u), U), which, according to the definition of 0, implies O(u) = O(h~(u)). 

Consequently, 

h_~(h~(u ) )  = exp( i~raO(h~(u) ) /2)exp( - iTraO(u) /2)z  + w = z + w 

whenever u = z + w, z E C, w E W. So h~ are bijections, and h~ 1 = h_~. 

It  remains to prove the required estimate of the Lipschitz constant of h~. To 

obtain it, we first note that  the mapping r [-1,  1] • {z E C; [z I <_ 1 + 1/c}  -+ C 

defined by r  z) = e x p ( - i ~ r s / 2 ) z  is continuously differentiable, so its Lipschitz 

constant is bounded by a constant a >_ 1 which depends on c only. We first show 

that  the Lipschitz constant of the restriction of h~ to the cylinder 

B = { z + w : z E V ,  I l z i l _ < ( l + c ) r a n d w E W }  

is at most to. Since the W component of h~ has Lipschitz constant one, it suffices 

to consider its C component, say ~/, which can be written as 

~=crr162 
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where  r B --+ [ -1 ,  1] • {z e C: Izt < 1 + l /c}  is defined by 

r  i f u = z + w ,  z � 9  w � 9  

Since 0 has Lipschitz constant  1/cr, we have tha t  Lip(C) < 1/cr ,  and infer tha t  

Lip(~7) _< n as required. Finally, we note  tha t  O(u) = 0 for u ~ B, so h~ is the  

ident i ty on the  complement  of B; since h~ is continuous, L e m m a  2 implies tha t  

Lip(h~,) _< n. | 

1. Construction of  the examples 

In this sect ion we denote  by e,~ the s tandard  or thonormal  basis of  g2- 

CONSTRUCTION OF EXAMPLE 1: The  construct ion from the in t roduct ion m a y  

now be described by lett ing Un = {x E t2: Ilxl] < 2 - '*} and by using L e m m a  5 

with c = 1, vl = v~ '~) = el and v2 = v~ ~) = en+l to find Lipschitz i somorphisms 

f,~: g2 --+ e2 wi th  uniformly bounded  Lipschitz constants  such t ha t  

1. f,~(x) = x whenever Ilxll _> 2 -~+1,  

2. fn(x) = (Xn+l ,X2, . . .  ,Xn,-Xl,Xn+2,x,~+3,.. .) for every x C Un, 

3. f~(u) is obta ined  from u by a rota t ion abou t  {x C g2: Xl = x,~+l = 0}, and  

4. the m a p  f~ maps  the set U~ onto itself. 

T h e n  the  assumpt ions  of L e m m a  4 are clearly satisfied, so the limit 

f = -  lira f n o ' " o f l  

defines a Lipschitz i somorphism of g2 onto itself. 

To show tha t  i f (0)  is not surjective, we note tha t  the mappings  f~ preserve 

the  norm,  so all sets f,~(Uk) = Uk for all k, n, and 

f~ o . . .  o f l ( x )  = (x,,+l,  - X l ,  - x 2 ,  �9 �9 �9 - x , , ,  x,~+2, x~+3 , . . . )  

for x G U,~. Whenever  u C g2 is such tha t  Uk = 0 for k _> m,  we infer tha t  for Itt 

small  enough, 

f m  o . . .  o ] l ( t u )  = ( 0 , - t u l , - t u 2 , . . . , - t u r n ,  0, 0,...); 

since by (3) this point  is fixed by all fk with k > m,  we conclude t ha t  f ( tu)  = 

(0, tul, tu2, . . . )  for [t[ sufficiently small. Since f is Lipschitz, this shows tha t  

ff(O)(u) = ( 0 , u l , u 2 , . . . )  for all u e e2. 
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It  would not  be  difficult in this example  to have tha t  f is everywhere  Gg teaux  

differentiable s imply  by replacing 0 with a smooth  function given by 

1 if I[ul[ _< 2 -n ,  
O(u) = sin2(2'~-17rl[u[I) if 2 - n  _< [lu[[ < 2 - n + l ,  

0 if Hull _> 2 -~+1.  

CONSTRUCTION OF EXAMPLE 2: We use the same construct ion as for Exam-  

ple 1, the  only difference being tha t  to construct  fn we use the o r thonormal  

vectors  v~ n) = ek+l and v~ n) = ek+l+2m, where n = 2 m + k, m _> 0, 0 < k < 2 m. 

The  proof  tha t  the  limit f = l i m ~ _ ~  f~o . . . o f1  defines a Lipschitz i somorphism 

of g2 onto itself is the  same as above. 

We show t h a t  the  weak derivat ive of f at  the  origin is zero; since f is Lip- 

schitz, this would follow once we show (a s tronger  proper ty)  tha t  if all non- 

zero coordinates  of u occur  before some 2 p, then  the first 2 p - 1 coordinates  

of f ( t u )  are zero provided tha t  [t[ is small enough: since by (2) (with ek+l in 

place of el and ek+l+2 m in place of en+l) the mappings  fn for n < 2 p can 

change only the  first 2 p - 1 coordinates,  all coordinates  beyond the first 2 p - 1 

of f2p-1 o . . .  o f l ( t u )  are still zero. If  Itl is small  enough, a direct calculat ion 

then  shows tha t  f2p+l-1 o . . .  o f l ( tU) has zero as the first 2 p - 1 coordinates  as 

well as all coordinates  f rom 2 p+I on. Using (3) we then  see by induction tha t ,  if 

m _> p + 1, then  f2,~ o . . .  o f l ( t u )  can have non-zero coordinates  only for indices 

2 p <_ j < 2 "~, which shows tha t  the first 2 p - 1 coordinates  of f ( t u )  are zero. 
| 

CONSTRUCTION OF EXAMPLE 3: We define U1 = g2 and for k :> 2 

U k = {X E ~2:x2 -~ X2+l ---~ 2-2k+4 and [xj[ <_ 2 - j + l  + 2 -k  for 2 < j < k}. 

Using L e m m a  5 with c = 

Lipschitz i somorphisms gk: 

such t ha t  

1/4, vl = v} k) -- el and v2 = v~ k) = ek+l we find 

g2 --+ g2 with uniformly bounded  Lipschitz constants  

1. gk(x) = x whenever  dist(x,  Uk) _> 2 -k ,  

2. gk(x) ----- (Xk+l ,X2, . . .  , x k , - - x l , x k + 2 , X k + 3 , . . . )  for every x E Uk, and 

3. the  set Uk is m a p p e d  by gk onto itself. 

We show that ,  if x E g2 \ Uk, then dist(x,  Uk+l) >__ 2 - k - 1 .  If x E g2 \ Uk, then  
2 2-2k+4 2 - J + l  2 -k  x 2 + Xk+ 1 > or Ixjl > + for some 2 <_ j < k. Let  y E Uk+l; 

then  y~ + Yk+22 . . . .  < 2 -2k+2 and lYJ] < 2-J+1 + 2 -k  for each 2 < j < k + 1. We 

es t imate  tha t  

(1) Y~ + Y~+I -< 2-2k+2 + 2-2k+1 + 2-2k-2  = 52"2-2k-2 
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so that  if Xl 2 2 2-2k+4 + Xk+ 1 > then 

[[x - Y[I > 2 -k+2  -- (52"2-2k-2)  1/2 : 3"2-k-1 > 2 k-1. 

If  Ixjl > 2 - j + l  + 2 -k  then 

IIx - y l l  -> IxjI  - lyjl > - 2 - k - 1  = 2-k-  

so that  in both  cases IIx - y ] l  -> 2 - k - l ,  and we infer that  dist(x, Uk+l) _> 2 -k -1 .  

This inequality shows that  Uk D Uk+l and gk+l(X) = x for x ~ Uk. 

Since all the other assumptions of Lemma 4 are obvious, we may use it to infer 

that  the limit 

f = - lim gk o . . .  o gl 
k--+CO 

defines a Lipschitz isomorphism of g2 onto itself. 

Let C1 = {x E e2: Ixj] < 2-J for all j}  and, for k k 2, let 

Ck = {x C g2: Ixll < 2 -k , lx j l  -< 2-J+1 for 2 _< j < k, and lxjl < 2 - j  for j > k}. 

Then Ck C Uk, so the expression for gk on Uk gives that  gk(Ck) = Ck+l. We 

infer that  for every x C C1, 

- g k  o . . .  o gl(X) = (--Xkq-1,  X l ,  X2, . . . , Xk ,  --Xk4-2, - -Xk  +3, . . .) ,  

which in the limit as k -~ oo shows that  f ( x )  = (0, Xl, x2 , . . . ) .  | 

CONSTRUCTION OF EXAMPLE 4: Let nl < n2 < " "  be such that  an1 < 1 

and c~k+ 1 < a~k/2.  Denote by V the span of {e~r j = 1 ,2 , . . .} ,  by W its 

orthogonal complement, and use Example 3 to find a Lipschitz isomorphism g of 
OO OO 

V onto itself such that  g ( ~ j = l  xnjen~) = ~ i=1  xnjenj+l for every x C V such 

tha t  Ix~jl _< 2-J  for j = 1, 2 , . . . .  

Define f ( v  + w) = g(v) + w whenever v E V and w E W. Then the image of 

the set 

n = {x C ~2: Ixn~l < 2-J  for j = 1 ,2 , . . . }  

lies in the hyperplane {x E /~2:x,1 = 0}. To show the statement concerning 
OO 

the non-surjectivity of the derivative, we show that  f ' ( x ) ( w  + ~-~j=l vn~e,~) = 
CO 

oo for every x E D and every u = w + E j = I  V n j e n j "  Since W -}- E j = I  X n j e n j + l  

f is Lipschitz, it suffices to verify this only when u has finitely many non-zero 

coordinates, in which case it is clear since for Itl sufficiently small we have x + t u  E 
OO D, so ( f ( x  + tu) - f ( x ) ) / t  = w + ~ j = l  x ~  e,~j+~. The statements of the example 

follow since C C D. 1 
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